
MD5 Preimages from Multiple Outputs with
Known Input Differentials

Klaudius Ignazius Rschju

Bavarian University for Low-Level Systems, Hardware, and Internet of Things
(BULLSHIT)

contact@hxp.io

Abstract. We demonstrate a preimage attack against the MD5 hash
function when multiple hash values are given whose corresponding input
strings are unknown, but guaranteed to be short and related by known in-
put differentials. The computational complexity of our attack is roughly

equivalent to 2128/(n−π/4)2 MD5 compressions, where n is the number
of given distinct outputs. This attack marks the first practical preimage
attack on MD5 in a specialized setting; by contrast, devastating attacks
on the collusion resistance of MD5 have been known since 2004 [2].

1 Introduction

It is well-known that preimage attacks are pretty hard, thus this is clearly not
the solution — especially for a rev challenge rated “medium”. In fact, the paper
excerpt in the challenge description was just there for general trolling purposes
and not intended as a hint for the challenge (read: we have absolutely no idea
how to achieve the attack complexity claimed in the abstract). Therefore, we
backdoored the implementation (https://github.com/krisprice/simd_md5).

2 Methodology

2.1 Single-Instruction Backdoor

The construction of the backdoor used in this paper relies on slight changes to
code that commonly gets linked into program images as part of the crtstuff.o

object when compiling C programs using the GNU C compiler (GCC). Such
code is typically responsible for managing low-level functions of the C runtime
environment such as constructors and destructors, and setting up monitoring
components such as GNU gperf. As those functions are usually present in ELF
program images regardless of their actual functionality, analysts tend to ignore
them, or at least exercise less care during early functionality examination. Such
functions therefore constitute perfect targets for dispatching hidden functional-
ity.

Figure 1 shows the libc csu init function in both the backdoored and the
vanilla form. Careful examination shows that the backdoor version increments

https://github.com/krisprice/simd_md5


2 K. I. Rschju

Fig. 1: The backdoored (left) and vanilla (right) versions of the constructor han-
dling libc csu init function usually linked into ELF binaries regardless of
their functionality.

the target of the pointer contained in register r15 by 8. As this function is
responsible for dispatching constructors during the early program startup phase,
this patch effectively shifts the control flow from the actual constructor location
to an attacker-controlled location. The indirect call therefore ends up calling
a location eight bytes behind the original default constructor’s (frame dummy)
location. As GCC adds padding between functions, there is a small code cave
located directly behind the frame dummy function that allows hiding a jump
beyond the p memsz of the segment. Figure 2 shows this setup.

Fig. 2: Hiding the jump in a dummy application (backdoored version on the left)



MD5 Preimages from Multiple Outputs with Known Input Differentials 3

2.2 Discrepancies in ELF Loading

When loading program segments into memory, the dynamic loader operates at
page granularity. This is counter-intuitive to the semantics of the p memsz field
in the program segment headers of ELF files. To exacerbate the situation, com-
mon off-the-shelf analysis tools like objdump and the Interactive Disassembler
(IDA) Pro1 actually honor the p memsz field and omit code outside of the defined
segment limits2 altogether.

This discrepancy can be used to hide the backdoor inserted in section 2.1
and thereby construct a stealthily-backdoored executable that might fool even
experienced binary analysts.

Figure 4 shows the analysis results on a dummy application in several com-
mon analysis tools (IDA Pro, objdump, and Radare 2) — only manual disas-
sembly of the binary (e.g. by using ndisasm as shown in Figure 3) or dynamic
analysis (e.g. by single-stepping in the GNU Debugger (GDB) with the stepi

command) reveals the jump beyond the segment boundaries.

Fig. 3: Revealing the hidden backdoor with ndisasm

1 https://www.hex-rays.com/
2 Note that this is even true for objdump when using the “disassemble everything”

switch -D

https://www.hex-rays.com/


4 K. I. Rschju

(a) IDA Pro

(b) objdump
(c) Radare 2

Fig. 4: The backdoor in several common analysis tools

3 Application

At this point, one can freely specify backdoor functionality. In context of this
work, desirable functionality might be the slight modification of a well-known
cryptographic algorithm contained within the binary. A good example of such
an algorithm might be a standard MD5 implementation (https://github.com/
krisprice/simd_md5) that gets patched in such a way that it implements a
reduced-round (12) version of MD5 instead. One feasible way of achieving this is
moving the base pointer (rbp) to a stack location such that all further calcula-
tions on the internal MD5 state get discarded after returning from the function
context.

Reducing the number of rounds used in MD5 from 64 to 12 breaks the hash’s
preimage resistance entirely, and allows reducing the hash to an SMT problem.
Giving enough related inputs, the problem is constrained enough to be solved
relatively quickly by an SMT solver such as Microsoft’s z3 (Listing 1.1).

https://github.com/krisprice/simd_md5
https://github.com/krisprice/simd_md5


MD5 Preimages from Multiple Outputs with Known Input Differentials 5

Fig. 5: Backdooring an implementation of MD5 (the mov operations in the penul-
timate basic block constitute the actual patch of the program image)



6 K. I. Rschju

1 import struct , z3
2

3 h = bytes.fromhex(’3ed50eac373185348499454857b06fd3 ’) # md5(flag ^ ’h ’)
4 x = bytes.fromhex(’448582 faa78b404a898d0532542d327b ’) # md5(flag ^ ’x ’)
5 p = bytes.fromhex(’9973 f05fde3fe6320be04a918c5b50ab ’) # md5(flag ^ ’p ’)
6

7 a0, b0 , c0 , d0 = 0x67452301 , 0xefcdab89 , 0x98badcfe , 0x10325476
8 ah, bh , ch , dh = struct.unpack(’IIII’, h)
9 ax, bx , cx , dx = struct.unpack(’IIII’, x)

10 ap, bp , cp , dp = struct.unpack(’IIII’, p)
11

12 unknown_words = z3.BitVecs(’f0 f1 f2 f3’, 32)
13 remaining_words = struct.unpack(’I’ * 12, b’\x80’ + b’\x00’ * 39 + struct.

pack(’Q’, 128))
14

15 h_flag = [w ^ 0x68686868 for w in unknown_words] + list(remaining_words)
16 x_flag = [w ^ 0x78787878 for w in unknown_words] + list(remaining_words)
17 p_flag = [w ^ 0x70707070 for w in unknown_words] + list(remaining_words)
18

19 K = [0xd76aa478 , 0xe8c7b756 , 0x242070db , 0xc1bdceee ,
20 0xf57c0faf , 0x4787c62a , 0xa8304613 , 0xfd469501 ,
21 0x698098d8 , 0x8b44f7af , 0xffff5bb1 , 0x895cd7be]
22 S = [7, 12, 17, 22] * 3
23 def FF(b, c, d):
24 return (b & c) | ((~b) & d)
25 def u32(value):
26 return (value + (1 << 32)) % (1 << 32) if isinstance(value , int) else

value
27 def ror(value , shift):
28 if isinstance(value , int):
29 shift %= 32
30 shifted = u32(value) >> shift
31 excess = value & ((1 << shift) - 1)
32 return shifted | (excess << (32 - shift))
33 return z3.RotateRight(value , shift)
34 def invert_md5(a, b, c, d, values):
35 a -= a0
36 b -= b0
37 c -= c0
38 d -= d0
39 for r in range(11, -1, -1):
40 B, C, D = c, d, a
41 a_t1 = u32(ror(b - c, S[r]) - K[r])
42 a_t2 = u32(a_t1 - values[r])
43 A = u32(a_t2 - FF(B, C, D))
44 a, b, c, d = A, B, C, D
45 print(a, b, c, d)
46 return z3.And(a == a0, b == b0, c == c0, d == d0)
47

48 ss = z3.Solver ()
49 print(’Adding H flag’)
50 ss.add(invert_md5(ah , bh , ch, dh, h_flag))
51 print(’Adding X flag’)
52 ss.add(invert_md5(ax , bx , cx, dx, x_flag))
53 print(’Adding P flag’)
54 ss.add(invert_md5(ap , bp , cp, dp, p_flag))
55 print(’Solving ’)
56 print(ss.check())
57

58 m = ss.model()
59 result = struct.pack(’IIII’, *[int(str(m.evaluate(w))) for w in

unknown_words ])
60 print(’hxp{’ + result.decode () + ’}’)

Listing 1.1: Breaking 12 rounds of MD5 with an SMT solver



MD5 Preimages from Multiple Outputs with Known Input Differentials 7

4 Related Work

Similar work on ELF backdoors was presented in [1] (including hiding backdoor
code in code caves such as the padding behind the frame dummy function), but
they do not use the flaws in analysis tools to further obfuscate the presence of
such a backdoor.

5 Conclusion

This paper presents both a novel method of inserting a backdoor into ELF
executables and of hiding the presence of such a backdoor from most common
analysis tools. Future research should be performed to identify other edge cases
in which analysis tools (and analysts) incorrectly assume that no backdoor is
present, and automated means of detecting such backdoors should be identified.



Bibliography

[1] Aymeric Mouillard Pierre Graux and Mounir Saoud. Backdooring ELF using
unused code. pages 1–6, 2016.

[2] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.


	MD5 Preimages from Multiple Outputs with Known Input Differentials

